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Analysis of Variational Methods in Image 
Restoration  
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Abstract— In this paper, image restoration using Variational methods based on Partial Differential Equation is presented for the removal of 
blur and noise. The algorithms presented are aimed to reduce the total variation in the image degraded by the noisy environment. 
Compared to linear filtering methods which introduce spurious oscillations at the abrupt jumps of the signal, the methods presented found 
to be superior. Extensive simulations have been carried out to show the effectiveness of our algorithms. Simulation results show 
improvements both visually and quantitatively compared to the observed image. In addition, it is capable of removing both multiplicative 
and additive noise from the image that is affected by blur. 

Index Terms— additive noise, blur, linear filtering, multiplicative noise, Partial Differential Equation (PDE), Total Variation (TV), image 
restoration. 

——————————      —————————— 

1 INTRODUCTION                                                                     
MAGE Restoration including image denoising and    
deblurring is one of the fundamental and important        
research area in image processing. Image restoration is a    

process of recovering the original image from the image      
degraded by the noisy environment. Degradation occurs due 
to the presence of noise and blur in the environment. Random 
noise is different during acquisition, transmission and pro-
cessing of images [1]. All deterministic models for degradation 
are based on the point spread function. The spatial degrada-
tion occurs due to atmospheric turbulence, motion blur, and 
defocusing system [2]. Image restoration is also referred to as 
image de-blurring or image de-convolution, finds application 
in the fields such  as astronomy, remote sensing, medical im-
age restoration, digital imaging systems [3]-[5] etc.    

Partial Differential Equations (PDEs) are widely used to 
solve the inverse problems. This can be achieved by discretiz-
ing such equations which results with a finite number of un-
knowns. There are several different ways to discretize a PDE. 
The simplest method uses finite difference approximations to 
obtain first and second order derivatives. The main advantage 
of using PDE is simple to implement. The Finite Element 
Method makes use of the function which contains some de-
gree of smoothness over the entire region.The solution of PDE 
equations are solved by using Euler Lagrange equations for 
image processing [6].These techniques finds its application in 
image inpainting, water marking and image segmentation [7]. 
Most of the restoration process is ill-posed.  

The linear inverse problem that follows hx y=  where 
n mh R ×∈ is the blur PSF with n m<  is generally underdeter-

mined and it does not have a stable unique solution. The prob-
lem is to estimate 1x h y−= from the given measurement y. ‘h’ is 
not invertible or a singular matrix. 

 In general, linear models work efficiently for denoising 
which is achieved by low pass filtering the signal. Since both 
noise and edges contain high frequencies, low pass filtering of 
piece wise constant signals (PWC) signals  introduces spurious 
oscillations at the edges referred to as Gibb’s phenomena 
[8].So, conventional least square filters cannot be applicable 
for effective noise removal. For this reason, several non linear 
methods used by restoration techniques such as wiener filter, 
median filter, wavelet thresholding has been developed [9] 
which preserves edges in an efficient manner compared to 
linear models. One of the simpler and popular Total Variation 
(TV) method and anisotropic diffusion will provide a well 
posed solution to such inverse problems by formulating the 
efficient optimization problems. 

The organisation of the paper is summarized as fol-
lows.PDE based image restoration is explained in the section 
2. Section 3 presents the simulation of the presented algo-
rithms. Section 4 presents the conclusion. 

2 PDE BASED IMAGE RESTORATION 
Total Variation (TV) based image restoration has been intro-
duced by Rudin, Osher, and Fatemi in 1992 [10]. Popular mod-
el for nonlinear image de-noising and deblurring is the Total 
Variation (TV) model. Total Variation determines the overall 
variation between the signal values.TV is an energy based al-
gorithm. High and low value of the energy function corre-
sponds to noise and clear (without noise) image respectively. 
By making use of iterative procedure, TV method makes the 
image to have the lowest energy. 

Thus, designing a good energy function results in an effi-
cient image restoration. TV denoising is used as an effective 
filtering method for recovering piecewise-constant signals 
[10]. It can be applied to 1D signal by using min-max property 
and Majorization and Minimization algorithm. It can also be 
applied to 2D images by the formulation of energy function 
using Partial differential equations (PDE).The idea is to mini-
mize the variation of the image so that the image becomes 
more clearer than the noisy image. Total Variation makes use  
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of l1 norm of the gradient whereas least square criteria uses l2 
norm. The development of fast, robust algorithms for TV and 
related non-linear filtering has been an active research topic.  

The concept of heat equation or diffusion is not only appli-
cable for heat transfer. It can be applied to image processing 
tasks such as image smoothing, inpainting, restoration. The 
principle behind diffusion process is given by Fick’s law.          
It can be mathematically formulated [11] as 
= − ∇J D u   (1) 
This equation states that a concentration gradient ∇u creates 

a flux J which tries to compensate for this gradient. ∇u and J 
are related by the diffusion tensor D, a positive definite sym-
metric matrix. Diffusion is anisotropic, if J and ∇u are not par-
allel.The continuity equation describes that diffusion makes 
the energy to move at time‘t’ rather than creating or destroy-
ing it. Diffusion equation is expressed as 

( )tu div D u∂ ∇=
    (2) 

Image affected by noise have different intensities at each 
pixel location. This has to be equilibrated by using diffusion 
process.If the diffusion tensor is a function of the gradient of 
an evolving image, it results in nonlinear diffusion filters. Lin-
ear diffusion is very effective in smoothing but edges are not 
preserved. Due to the use of Gaussian filter, smoothing has 
done to remove noise but edges are also get smoothened and 
yields the blurred image. Linear diffusion filtering does not 
locate edges properly when moving from finer to coarser 
scales. So structures which are identified at a coarse scale do 
not give the right location and have to be traced back to the 
original image called corresponding problem [12]. 

2.1 Tikhnov Model  
 The tikhnov model problem is formulated by the energy 
function referred to as the objective or cost function is ex-
pressed as     

{ } 2 21 1min ( ) ( , ) ( )
2 2λΩ Ω

= ∇ + ∗ −∫ ∫E u u x y h f u
   

 (3) 

where ( , )u x y is the restored image, f represents the observed 
image, h refers to the blur operator, the first term represents 
the prior and the second one represent the data fidelity term. 
Fig.1 shows the block diagram of image restoration using 
Tikhnov model.

 

 
Fig. 1. Block diagram of Tikhnov model 

 The optimal value of u which minimizes the objective func-
tion is obtained by using Newton’s method. The equation can  
be solved by using Euler Lagrange equation, as a gradient of  
the functional E and represented by∇E . 

1( ) ( )
λ

∂
= −∇ = + − − ∗

∂ xx yy
u E u u f h u
t             

(4) 

 This is a kind of heat equation, converges on a steady state 
solution of ‘u’. Using finite difference scheme, the above men-
tioned PDE can be solved. Algorithm for denoising and 
deblurring using Tikhnov model can be summarized as fol-
lows.

 _______________________________________________________ 
 

Algorithm for Tikhnov Model  
_______________________________________________________ 
1.  Obtain the input image.  
2.  Blur the input image by using blur kernel of 15 x 15 filter-

with values 2 2
1( , )

1
h i j

i j
=

+ +
 for 7  ,  7i j≤ ≤ . 

3.  Add random noise to the blurred image standard            
deviation, σ =2. 

4. Set the values for regularization or Lagrange multiplier   λ,   
Number of iterations and step size, dt. 

5.  Pass the degraded image into Tikhnov model filter to   re-
store the Original image. 

6.  Determine the first and second order derivatives to   update 
the equation by solving (4). 

7. If the number of iteration gets over, display the restored 
image and analyze it with the PSNR evaluation criterion. 

__________________________________________________ 

2.2 ROF Model  
In Tikhnov Model, the image prior which is considered as a 
set of smooth image has low gradient value .As a result, it 
yields a blurred image. Rudin, Osher and Fatemi introduced 
the ROF model where they introduced the prior term as the 

1 norm. It is expressed by unconstrained or Lagrangian mod-
el as 

{ } 21min ( ) ( , ) ( )
2

E u u x y d f h u d
λΩ Ω

= ∇ Ω+ − ∗ Ω∫ ∫
    

(5) 

where λ is the Lagrange Multiplier. Fig. 2 shows the block 
diagram of image restoration using ROF model.  

 
Fig. 2. Block diagram of ROF model 

Using gradient descent method, the update equation is ex-
pressed in (6). 

2 2

3 3
2 2 2 22 2

( )

( ) ( )

xx y x y xy yy x x y xy

x y x y

u u u u u u u u u uu E
t

u

f

u u

h u

u

h
λ

∗ ∗ − −∂
= −∇

∂
+ +

−
= + +          (6) 

Algorithm for denoising and deblurring using ROF model can 
be summarized as follows.

 
_______________________________________________________ 
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Algorithm for ROF Model 
_______________________________________________________ 

1. Obtain the input image.  
2. Blur the input image by using blur kernel of 15 x 15  filter 

with values 2 2
1( , )

1
h i j

i j
=

+ +
 for 7  ,  7i j≤ ≤ . 

3. Add random noise to the blurred image with standard 
deviation, σ =2. 

4. Set the values for regularization or Lagrange           multi-
plier   λ,      smudge factor, Number of iterations and step 
size, dt. 

5. Pass the degraded image into ROF model filter to   re-
store the Original image. 

6. Determine the first and second order derivatives to   up-
date the equation by (6). 

7. If the number of iteration gets over, display the restored   
image and analyze it with the PSNR evaluation criterion. 

_______________________________________________________ 

2.3 Perona Malik Diffusion  
A non linear PDE formulation for image smoothing has 

been introduced by Perona and Malik [13]. Fig.3 shows the 
block diagram of image restoration using Perona Malik Diffu-
sion model. 

 
Fig. 3. Block diagram of Perona Malik Diffusion model.  

_____________________________________________________

 Algorithm for Perona Malik Diffusion (PMD) 
_______________________________________________________

 1. Obtain the input image. 
2. Blur the input image by the Gaussian blur with standard 

deviation, σ=20 of size 3 3× . 
3. Add Speckle noise to the blurred image with variance,   

σ2 = 0.01. 
4. Determine the gradient of the blurred noisy image 
5. Determine the conductivity function, g using the equa-

tion (8). 
6. Conductivity and the Gradient value of an image are giv-

en as the input to the Perona Malik diffusion filter.   
7. Obtain the diffused image and evaluate the output by us-

ing PSNR, Equivalent Number of Loops (ENL) and Edge 
Preserving Index (EPI) criterion. 

 
PMD is a non linear filter used for avoiding blurring and 

localization problems by performing inhomogeneous process 
at the presence of edges. The diffusion process is position     
dependent expressed in the equation (7). 

( ). ( , )I g
t

x y I∂
= ∇

∂
∇

           (7) 

( )
2

2exp
I

g I
k

 − ∇ ∇ =
 
            (8) 

where ( , )g x y  is the conductivity function depends on the 
gradient I∇  of the image at location ( , )x y  , ( , )I x y  denotes 
the intensity of the image I, K is a Constant parameter controls 
conductivity function.   

In terms of spatial derivatives, diffusion can be written as  

( , ) ( , )I I Ig x y
t t t

g x y
x y

∂ ∂ ∂ ∂ ∂   = +   ∂ ∂  ∂ ∂ ∂          (9)       

1, , 1, ,

, 1 , , 1,
, ,

, 1 , , 1 ,

, 1 , , , 1

( )( )

( )( )

( )( )2

( )( )

+ +

− −+

+ +

− −

+ − 
 
− + − 

= +  + + − 
 − + − 

i j i j i j i j

i j i j i j i jt dt t
i j i j

i j i j i j i j

i j i j i j i j

g g I I

g g I IdtI I
g g I I

g g I I            (10)            

Solving equation (9), the update equation obtained is given 
in the equation above. Perona Malik Diffusion algorithm for 
denoising and deblurring can be summarized as follows. 

2.4 Edge Enhancing Diffusion  
   PMD is position dependent but not directed. Edge en-

hancing diffusion has been developed by Weickert to find the 
orientation of the edges.  

1 0
0 2

T c
D R R

c
 

=  
            (11)

 

2 2

1

( ) ( )

u u
x y

u ux y
y xu u

I I
R

I II I

 −
 =
 +            (12)

 

where the diffusion tensor D is formulated as where R is the 
rotation matrix, defines system aligned with the gradient vec-
tor at scale u. uI  is the image observed at scale u. Fig.4 shows 
the block diagram of image restoration using Edge Enhancing 
Diffusion model. 

    
Fig. 4. Block diagram of Edge Enhancing Diffusion model. 

The diffusion is directed towards 90 degree to the gradient. 
This diffusion tensor, D is given in the equation (13). 

2 2
1 2 1 2

2 22 2
1 2

( ) ( ) ( )1
( ) ( ) ( )( ) ( )

u u u u
x y x y

u u u ux y
x y x xu u

c I c I c c I I
D

c c I I I II I

 + −
 =
 − ++               (13)

 

1 2
1
5

c c=
           (14)

 

2 2exp
u
wI

c
k

 −
=   

 
           

(15)
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where c1 and c2  is the conductivity in the direction of gradient  
and curves to preserve edges and corners present in the image 
respectively. Thus, the conductivity along edge is designed to 
be one fifth of the conductivity across edge. Edge Enhancing 
Diffusion algorithm for denoising and deblurring can be 
summarized as follows. 
__________________________________________________ 
Algorithm for Edge Enhancing Diffusion (EED) 
__________________________________________________ 

1. Obtain the input image  
2. Blur the input image by the Gaussian blur with stand-

ard   deviation, σ=20 of size 3 3× . 
3. Add Speckle noise to the blurred image with variance,          

σ2 = 0.01. 
4. Determine the gradient of the blurred noisy image. 
5. Determine the conductivity functions, c1 and c2 using 

the equations (14) and (15). 
6. Conductivity and the Gradient value of an image are 

given as the input to the Edge Enhancing Diffusion 
filter.  

7. Obtain the diffused image and evaluate the output by 
using PSNR, Equivalent Number of Loops (ENL) and 
Edge Preserving Index (EPI) criterion.  

_______________________________________________________ 

3 SIMULATION RESULTS  

Simulation results of the image restoration using Tikhnov and 
ROF model is shown in the Fig. 5. Fig. 5(a) shows the input 
Cameraman image with size 256 256× . The input image is 
blurred with the kernel of 15 15×  filter with values

2 2
1( , )

1
h i j

i j
=

+ +
 for 7  ,  7i j≤ ≤ , which is normalised to 

have a unit sum shown in the Fig. 5(b). Other simulation     
parameters includes Number of Iterations= 100, Step size,        
dt = 0.24 and Regularization parameter= 10.  

TABLE 1 

COMPARISON OF TOTAL VARIATION METHOD ALGORITHMS 

 
Fig. 5(c) is the restored image by deblurring and denoising 

the corrupted image using Tikhnov model with PSNR= 25dB. 
Fig. 5(d) is the restored image by deblurring and denoising the 
corrupted image. Since, the image prior designed in Tikhnov 
model contains low gradient ( 1  norm), edges are smooth-
ened out. Unlike Tikhnov model, ROF model preserves 
edgesbecause 1  norm is used to model the prior. From      
Table 1, it is clear that ROF model shows better performance in 
image restoration with PSNR of 5 dB greater than that of 
Tikhnov model. Simulation results of the image restoration 

using Edge Enhancing Diffusion and Perona Malik Diffusion 
are shown in the Fig. 6. 

       
(a)                                                        (b) 

       
 (c)                                                         (d) 

Fig. 5.(a) Original image, Restored image using (b)Tikhnov Model, (c)ROF 
Model. 

Fig. 6(a) shows the input Cameraman image of size 256 256× . 
Fig. 6(b) shows the blurred noisy image is obtained by blur-
ring the input image using Gaussian blur with σ= 20 and in-
cluding Speckle noise which is multiplicative in nature with   
σ2 = 0.04. Other simulation parameters includes Number of      
Iterations= 100, Step size, dt =0.24, Constant parameter con-
trols conductivity function, K=60.   

TABLE 2 

COMPARISON OF PMD AND EED ALGORITHMS 

 
Fig. 6(c) is the diffused image by deblurring and denoising 

the corrupted image with PSNR= 27dB, ENL= 128, EPI= 0.10 
using Perona Malik Diffusion method. Fig. 6(d) is the diffused 
image by deblurring and denoising the corrupted image with         
PSNR= 29dB, ENL= 138, EPI= 0.20 using Edge Enhancing Dif-
fusion method.EED model shows better performance com-
pared to PMD model. Higher value of ENL refers to the        
effective reduction of speckle noise. EPI refers the preservation  
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of edges in the restored image. From Table 2, it is clear that 
EED model shows better performance than PMD model with 
increase in PSNR, EPI and ENL values.  

       
   (a)                                                    (b) 

                                              
                        (c)                                                (d) 

Fig.  6. (a) Original image, (b)Blurred noisy image, Restored images using 
(c) Perona Malik diffusion Model, (d) Edge enhancing diffusion Model. 

4 CONCLUSION 
In this paper, algorithms for image restoration have been pre-
sented. The Total variation and diffusion based methods are 
found to be effective in image denoising and deblurring. These 
methods are superior, since it forms one of the non blind de-
convolution processes for image restoration. Simulation re-
sults show that the given algorithms can recover the original 
image which is corrupted by both additive and multiplicative 
noise.  
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